AI model predicts risk of death in patients with heart disease better than expert-constructed models

Scientists believe similar models could be used in the future to predict risk and suggest treatments, helping doctors 'with more and more aspects of their practice'.

By
Leontina
Postelnicu

[London, UK] Scientists have designed a model using Artificial Intelligence that can predict risk of death in patients with coronary heart disease (CHD) better than expert-constructed models.

The British Heart Foundation estimates that 2.3 million people are living with CHD in the UK, where it is one of the leading causes of death.

According to a new study published in PLOS One, scientists from the Francis Crick Institute, working with University College London Hospitals NHS Foundation Trust and the Farr Institute of Health Informatics Research, developed the AI model using the data of 80,000 patients, available for researchers through UCL’s CALIBER platform, which links four sources of electronic health data in England.

The model that the AI one was compared to made predictions based on 27 variables chosen by medical experts, while the Crick team got their AI algorithms to train themselves, look for patterns and select the most relevant variables from a set of 600.

The paper shows that the model could pick out prognostic factors that ‘may be unlikely’ to be considered by an expert-constructed model – such as home visits, which could indicate frailty - as they are not ‘obviously’ linked to risk of death in heart disease patients. 

“What we've done here is a proof of principle—we've shown that models where computers pick the variables can do as well, or even slightly better than traditional ones where variables are picked by experts,” Andrew Steele, first author of the research article, who carried out the project at the Crick Bioinformatics and Computational Biology Laboratory, told BJ-HC.

The experts explain that, while conventional models are more ‘readily interpretable’, they also ‘require significant expert input to construct, potentially not making use of the richness of available data’, while data-driven modelling can simplify the process and allow 'novel' variables to be identified.

“Doctors already use the kind of 'traditional' models we compared our machine learning approaches to in order to work out whether a patient is at risk of, for example, a heart attack.

“We need more work developing a robust framework for models like these, and in particular for gaining access to the data—but, once those are in place, these kinds of machine learning tools are going to start making their way into clinical practice," Steele added. 

“In the longer term, I think models like these will go from predicting risk to suggesting treatments, based on what has been most successful in other patients with similar characteristics.

"Together with things like image recognition technologies helping with interpretation of scans, I think doctors are going to be using models to help with more and more aspects of their practice.”

Leontina Postelnicu

To share tips, news or announcements, contact the writer on lpostelnicu@himss.org

Related News

Breaking new ground with population analytics

Stakeholders join forces to take place-based care to the next level

BLOG: Delivering better care through digital technologies

Professor Martin Severs, NHS Digital Chief Medical Officer and Caldicott Guardian, writes about this week's Clinical Informatics Congress...

'Switching the mindset' in digital transformation

Joanne Bosanquet, Deputy Chief Nurse, Public Health England, discusses the need to stay 'connected to our community' via technology...